Matrices with High Completely Positive Semidefinite Rank

نویسنده

  • SANDER GRIBLING
چکیده

A real symmetric matrix M is completely positive semidefinite if it admits a Gram representation by positive semidefinite matrices (of any size d). The smallest such d is called the completely positive semidefinite rank of M , and it is an open question whether there exists an upper bound on this number as a function of the matrix size. We show that if such an upper bound exists, it has to be at least exponential in the matrix size. For this we exploit connections to quantum information theory and we construct extremal bipartite correlation matrices of large rank. We also exhibit a class of completely positive matrices with quadratic (in terms of the matrix size) completely positive rank, but with linear completely positive semidefinite rank, and we make a connection to the existence of Hadamard matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completely Positive Semidefinite Rank

An n×n matrix X is called completely positive semidefinite (cpsd) if there exist d×d Hermitian positive semidefinite matrices {Pi}i=1 (for some d ≥ 1) such that Xij = Tr(PiPj), for all i, j ∈ {1, . . . , n}. The cpsd-rank of a cpsd matrix is the smallest d ≥ 1 for which such a representation is possible. In this work we initiate the study of the cpsd-rank which we motivate twofold. First, the c...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix

The positive semidefinite rank of a nonnegative (m×n)-matrix S is the minimum number q such that there exist positive semidefinite (q × q)-matrices A1, . . . , Am, B1, . . . , Bn such that S(k, l) = trA∗kBl. The most important lower bound technique on nonnegative rank only uses the zero/nonzero pattern of the matrix. We characterize the power of lower bounds on positive semidefinite rank based ...

متن کامل

Lower bounds on matrix factorization ranks via noncommutative polynomial optimization

We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogues: the completely positive rank and the completely positive semidefinite rank. We study the convergence properties of o...

متن کامل

Projection methods for quantum channel construction

We consider the problem of constructing quantum channels, if they exist, that transform a given set of quantum states {ρ1, . . . , ρk} to another such set {ρ̂1, . . . , ρ̂k}. In other words, we must find a completely positive linear map, if it exists, that maps a given set of density matrices to another given set of density matrices, possibly of different dimension. Using the theory of completely...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016